An Interactive Introduction to Complex Numbers

2. Basic Calculations

Complex Conjugates

Example 2.1:

Open the Applet Basic Calculations and enter $z_{1}=1+2 \cdot i$ and $z_{2}=1.5 \cdot e^{150^{\circ} i}$. Then click on \bar{z}_{1} and \bar{z}_{2}, respectively.
$\bar{z}_{1}=1-2 \cdot i$ is called the "complex conjugate of $z_{1}=1+2 \cdot i$ " and $\bar{z}_{2}=1.5 \cdot e^{210^{\circ} i}=1.5 \cdot e^{-150^{\circ} i}$ is the complex conjugate of $z_{2}=1.5 \cdot e^{150^{\circ} i}$.

Rule 2.1 a

The complex conjugate of $z=a+b \cdot i$ in cartesian form is $\bar{z}=a-b \cdot i$ with $\operatorname{Re}(\bar{z})=\operatorname{Re}(z)$ and $\operatorname{Im}(\bar{z})=-\operatorname{Im}(z)$.

Rule 2.1 b

The complex conjugate of $z=r \cdot e^{\varphi i}$ in exponential form is $\bar{z}=r \cdot e^{-\varphi i}$ with $|z|=|\bar{z}|$ and $\arg (\bar{z})=-\arg (z)$.

Rule 2.1 c

```
\overline{z}}=
```

Graphically, the complex conjugate \bar{z} mirrors z at the real axis and vice versa.

Addition

Example 2.2:

Open the Applet Basic Calculations and set $z_{1}=2+i$ and $z_{2}=1+2 \cdot i$. Then click on $z_{1}+z_{2}$. Note that both the real parts and the imaginary parts are added up.

Rule 2.2

The sum of two complex numbers $z_{1}=a_{1}+b_{1} \cdot i$ and $z_{2}=a_{2}+b_{2} \cdot i$ in cartesian form is $z_{1}+z_{2}=a_{1}+b_{1} \cdot i+a_{2}+b_{2} \cdot i=a_{1}+a_{2}+\left(b_{1}+b_{2}\right) \cdot i \quad$ with $\quad \operatorname{Re}\left(z_{1}+z_{2}\right)=a_{1}+a_{2} \quad$ and $\operatorname{Im}\left(z_{1}+z_{2}\right)=b_{1}+b_{2}$.

There is no general rule for the addition of complex numbers in exponential form.

Subtraction

Example 2.3:

Open the Applet Basic Calculations and set $z_{1}=3+6 \cdot i$ and $z_{2}=4+2 \cdot i$. Then click on $z_{1}-z_{2}$. Note that both the real parts and the imaginary parts are subtracted.

Rule 2.3

The difference between two complex numbers $z_{1}=a_{1}+b_{1} \cdot i$ and $z_{2}=a_{2}+b_{2} \cdot i$ in cartesian form is $\quad z_{1}-z_{2}=a_{1}+b_{1} \cdot i-\left(a_{2}+b_{2} \cdot i\right)=a_{1}-a_{2}+\left(b_{1}-b_{2}\right) \cdot i \quad$ with $\operatorname{Re}\left(z_{1}-z_{2}\right)=a_{1}-a_{2}$ and $\operatorname{Im}\left(z_{1}-z_{2}\right)=b_{1}-b_{2}$.

There is no general rule for the subtraction of complex numbers in exponential form.

Multiplication

Example 2.4 a:

Open the Applet Basic Calculations and set $z_{1}=1+2 \cdot i$ and $z_{2}=3+4 \cdot i$. Then click on $z_{1} \cdot z_{2}$. Note the multiplication in exponential form first. Obviously, the absolute values are multiplied, whereas the exponents are added up.

Rule 2.4 a

The product of two complex numbers $z_{1}=r_{1} \cdot e^{\varphi_{1} i}$ and $z_{2}=r_{2} \cdot e^{\varphi_{2} i}$ in exponential form is $\quad z_{1} \cdot z_{2}=r_{1} \cdot e^{\varphi_{1} \cdot i} \cdot r_{2} \cdot e^{\varphi_{2} \cdot i}=r_{1} \cdot r_{2} \cdot e^{\varphi_{1} \cdot i+\phi \cdot i_{2}}=r_{1} \cdot r_{2} \cdot e^{\left(\varphi_{1}+\varphi_{2}\right) i i} \quad$ with $\quad\left|z_{1} \cdot z_{2}\right|=r_{1} \cdot r_{2} \quad$ and $\arg \left(z_{1} \cdot z_{2}\right)=\varphi_{1}+\varphi_{2}$.

Example 2.4 b:

How would you multiply $z_{1}=1+2 \cdot i$ and $z_{2}=3+4 \cdot i$ in cartesian form intuitively? Probably by calculating $z_{1} \cdot z_{2}=(1+2 \cdot i) \cdot(3+4 \cdot i)=1 \cdot 3+1 \cdot 4 \cdot i+2 \cdot 3 \cdot i+2 \cdot i \cdot 4 \cdot i=$ $1 \cdot 3+(1 \cdot 4+2 \cdot 3) \cdot i+2 \cdot 4 \cdot i^{2}=1 \cdot 3-2 \cdot 4+(1 \cdot 4+2 \cdot 3) \cdot i=-5+10 \cdot i$. The applet in example 2.4 a shows that the result is correct.

Rule 2.4 b

The product of two complex numbers $z_{1}=a_{1}+b_{1} \cdot i$ and $z_{2}=a_{2}+b_{2} \cdot i$ in cartesian form is $z_{1} \cdot z_{2}=\left(a_{1}+b_{1} \cdot i\right) \cdot\left(a_{2}+b_{2} \cdot i\right)=a_{1} \cdot a_{2}+b_{1} \cdot a_{2} \cdot i+a_{1} \cdot b_{2} \cdot i+b_{1} \cdot b_{2} \cdot i^{2}$ $=a_{1} \cdot a_{2}-b_{1} \cdot b_{2}+\left(a_{1} \cdot b_{2}+a_{2} \cdot b_{1}\right) \cdot i$ with $\operatorname{Re}\left(z_{1} \cdot z_{2}\right)=a_{1} \cdot a_{2}-b_{1} \cdot b_{2}$ and $\operatorname{Im}\left(z_{1} \cdot z_{2}\right)=a_{1} \cdot b_{2}+a_{2} \cdot b_{1}$.

Rule 2.4 c

$z \cdot \bar{z}=(a+b \cdot i) \cdot(a-b \cdot i)=a^{2}-(b \cdot i)^{2}=a^{2}-b^{2} \cdot(-1)=a^{2}+b^{2}=|z|^{2}$
$z \cdot \bar{z}=r \cdot e^{\varphi \cdot i} \cdot r \cdot e^{-\varphi \cdot i}=r^{2} \cdot e^{(\varphi-\varphi) i}=r^{2} \cdot e^{0 . i}=r^{2}=|z|^{2}$

Division

Example 2.5 a:

Open the Applet Basic Calculations and set $z_{1}=1+2 \cdot i$ and $z_{2}=3+4 \cdot i$. Then click on z_{1} / z_{2}. Note the division in exponential form first. Obviously, the absolute values are divided, whereas the exponents are subtracted.

Rule 2.5 a

The quotient of two complex numbers $z_{1}=r_{1} \cdot e^{\varphi_{1} i}$ and $z_{2}=r_{2} \cdot e^{\varphi_{2} i}$ in exponential form is $\frac{z_{1}}{z_{2}}=\frac{r_{1} \cdot e^{\varphi_{1} \cdot i}}{r_{2} \cdot e^{\varphi_{2} \cdot i}}=\frac{r_{1}}{r_{2}} \cdot e^{\varphi_{1} \cdot i-\varphi_{2} \cdot i}=\frac{r_{1}}{r_{2}} \cdot e^{\left(\varphi_{1}-\varphi_{2}\right) \cdot i} \quad r_{2} \neq 0$ with $\left|\frac{z_{1}}{z_{2}}\right|=\frac{r_{1}}{r_{2}}$ and $\arg \left(\frac{z_{1}}{z_{2}}\right)=\varphi_{1}-\varphi_{2}$.

Example 2.5 b:

Although not quite obvious one can also calculate the quotient of $z_{1}=1+2 \cdot i$ and $z_{2}=3+4 \cdot i$ in cartesian form. To get a result, expand the quotient with $\bar{z}_{2}=3-4 \cdot i$ and consider rule 2.4 c .

Then $\frac{z_{1}}{z_{2}}=\frac{1+2 \cdot i}{3+4 \cdot i}=\frac{1+2 \cdot i}{3+4 \cdot i} \cdot \frac{3-4 \cdot i}{3-4 \cdot i}=\frac{3-4 \cdot i+6 \cdot i-8 \cdot i^{2}}{9-16 \cdot i^{2}}=\frac{11+2 \cdot i}{25}=0.44+0.08 \cdot i$.

Rule 2.5 b

The quotient of two complex numbers $z_{1}=a_{1}+b_{1} \cdot i$ and $z_{2}=a_{2}+b_{2} \cdot i$ in cartesian form is
$\frac{z_{1}}{z_{2}}=\frac{a_{1}+b_{1} \cdot i}{a_{2}+b_{2} \cdot i}=\frac{\left(a_{1}+b_{1} \cdot i\right) \cdot\left(a_{2}-b_{2} \cdot i\right)}{\left(a_{2}+b_{2} \cdot i\right) \cdot\left(a_{2}-b_{2} \cdot i\right)}=\frac{a_{1} \cdot a_{2}-a_{1} \cdot b_{2} \cdot i+a_{2} \cdot b_{1} \cdot i-b_{1} \cdot b_{2} \cdot i^{2}}{a_{2}^{2}-\left(b_{2} \cdot i\right)^{2}}$
$=\frac{a_{1} \cdot a_{2}+b_{1} \cdot b_{2}+\left(a_{2} \cdot b_{1}-a_{1} \cdot b_{2}\right) \cdot i}{a_{2}^{2}+b_{2}^{2}}=\frac{a_{1} \cdot a_{2}+b_{1} \cdot b_{2}}{\left|z_{2}\right|^{2}}+\frac{a_{2} \cdot b_{1}-a_{1} \cdot b_{2}}{\left|z_{2}\right|^{2}} \cdot i \quad a_{2} \neq 0 \vee b_{2} \neq 0$
with $\operatorname{Re}\left(\frac{z_{1}}{z_{2}}\right)=\frac{a_{1} \cdot a_{2}+b_{1} \cdot b_{2}}{a_{2}^{2}+b_{2}^{2}}=\frac{a_{1} \cdot a_{2}+b_{1} \cdot b_{2}}{\left|z_{2}\right|^{2}}$ and $\operatorname{Im}\left(\frac{z_{1}}{z_{2}}\right)=\frac{a_{2} \cdot b_{1}-a_{1} \cdot b_{2}}{a_{2}^{2}+b_{2}^{2}}=\frac{a_{2} \cdot b_{1}-a_{1} \cdot b_{2}}{\left|z_{2}\right|^{2}}$.

Rule 2.5 c

$\frac{z_{1}}{z_{2}}=\frac{z_{1} \cdot \bar{z}_{2}}{z_{2} \cdot \bar{z}_{2}}=\frac{z_{1} \cdot \bar{z}_{2}}{\left|z_{2}\right|^{2}}$

Exercise 2.1:

Determine the complex conjugates of $z_{1}=1-4 \cdot i$ and $z_{2}=0.5 \cdot e^{117^{7^{i}}}$. Use the Applet Basic Calculations to check your answers.

Exercise 2.2:

We have $z_{1}=1-4 \cdot i$ and $z_{2}=-1+3 \cdot i$. Determine $z_{1}+z_{2}, z_{1}-z_{2}, z_{1} \cdot z_{2}$ and $\frac{z_{1}}{z_{2}}$. Use the Applet Basic Calculations to check your answers.

Jens Siebel: An Interactive Introduction to Complex Numbers 2. Basic Calculations

Exercise 2.3:

We have $z_{1}=1.5 \cdot e^{60^{\circ} \cdot i}$ and $z_{2}=e^{320^{\circ} i}$. Determine $z_{1}+z_{2}, z_{1}-z_{2}, z_{1} \cdot z_{2}$ and $\frac{z_{1}}{z_{2}}$. If necessary, turn the numbers into cartesian form. Use the Applet Basic Calculations to check your answers.

